专业性
责任心
高效率
科学性
全面性
第一节 单晶硅太阳能电池
一、单晶硅太阳能电池的特点
硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cmX2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cmX5cm)转换效率达8.6%。
单晶硅太阳能电池的特点:
1、光电转换效率高,可靠性高。
2、先进的扩散技术,保证片内各处转换效率的均匀性。
3、运用先进的PECVD成膜技术,在电池表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观。
4、应用高品质的金属浆料制作背场和电极,确保良好的导电性。
二、单晶硅太阳能电池制备过程
1、影响少数载流子寿命的因素分析
太阳能电池是一种少数载流子工作器件,当光照射到一个P-型半导体的表面上,光在材料内的吸收产生电子与空穴对。在这种情况下,电子是少数载流子,它的寿命定义为从其产生到其与空穴复合之间所生存的时间。少数载流子在电池内的寿命决定了电池的转换效率。因此要提高电池的转换效率,就必须设法减少少数载流子在电池内的复合,从而增加少数载流子的寿命。影响少数载流子寿命的因素有:
1)体内复合。减少晶体硅体内的复合,首先要选用适当的掺杂浓度的衬底材料。一般太阳能电池制造所用的硅片的电阻率在0.5到1.0cm左右。提高晶体的质量,减少缺陷和杂质,是提高少数载流子寿命的重要手段。吸杂(gettering)工艺能有效的提高材料的质量。钝化(passivation)工艺能有效地减少晶体缺陷对少数载流子寿命的影响。
2)表面复合。减少表面复合通常采用在硅表面生成一层介质膜如二氧化硅(SiO2)和氮化硅(SiN)。这种介质膜完善了晶体表面的悬挂键,从而达到表面钝化的目的。如果这种介质膜生成在n-型硅的表面,由于在这些介质膜内固有的存在作一些正离子,这些正离子排斥了少数载流子空穴向表面移动。另外一种表面钝化的方法是在电池表面形成高-低结(high-lowjunction)。这种结在表面产生一个电场,从而排斥了少数载流子空穴向表面移动。
3)电极区复合。减少电极区的复合可采用将电极区的掺杂浓度提高,从而降低少数载流子在电极区的浓度。减少载流子在此区域的复合。
基于以上提高电池转换效率的途径,派生了多种高效晶体硅太阳能电池的设计和制造工艺。其中包括PESC电池(发射结钝化太阳电池)和表面刻槽绒面PESC电池;背面点接触电池(前后表面钝化电池);PERL电池(发射结钝化和背面点接触电池)。由这些电池设计和工艺制造出的电池的转换效率均高于20%,其中保持世界记录(24.7%)的单晶硅和多晶硅电池(19.8%)的转换效率均是由PERL电池实现的。
2、高效太阳能电池的工艺流程
高效单晶硅太阳电池工艺流程如下:
1)去除损伤层
2)表面绒面化
3)发射区扩散
4)边缘结刻蚀
5)PECDV沉积SiN
6)丝网印刷正背面电极浆料
7)共烧形成金属接触
8)电池片测试。
三、单晶硅太阳能电池的种类
德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单晶硅太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。
四、单晶硅太阳能电池级硅材料
单晶硅材料制造要经过如下过程:石英砂一冶金级硅一提纯和精炼一沉积多晶硅锭一单晶硅一硅片切割。硅主要以siO2形式存在于石英和砂子中。它的制备主要是在电弧炉中用碳还原石英砂而成。该过程能量消耗很高,约为14kwh/kg,因此硅的生产通常在水电过剩的地方(挪威,加拿大等地)进行。这样被还原出来的硅的纯度约98%一99%,称为冶金级硅(MG一Si)。大部分冶金级硅用于制铁和制铝工业。目前全世界冶金级硅的产量约为50万吨/年。半导体工业用硅占硅总量的很小一部分,而且必须进行高度提纯。电子级硅的杂质含量约10-10%以下。典型的半导体级硅的制备过程:粉碎的冶金级硅在硫化床反应器中与HCI气体混合并反应生成三氯氢硅和氢气,Si+3HCI→SiHC13+H2。由于SiHC13在30℃以下是液体,因此很容易与氢气分离。接着,通过精馏使SiHC13与其它氯化物分离,经过精馏的SiHCl3,其杂质水平可低于10-10%的电子级硅要求。提纯后的SiHC13通过CVD原理制备出多晶硅锭。基于同样原理可开发出另一种提纯方法,即在硫化床反应器中,用Si烷在很小的Si球表面上原位沉积出Si。此法沉积出的Si粉未颗粒只有十分之几毫米,可用作CZ直拉单晶的投炉料或直接制造Si带。
拉制单晶有CZ法(柑祸拉制)和区熔法两种。CZ法因使用石英柑蜗而不可避免地引入一定量的氧,对大多数半导体器件来说影响不大,但对高效太阳电池,氧沉淀物是复合中心,从而降低材料少子寿命。区熔法可以获得高纯无缺陷单晶。常规采用内圆切割(ID)法将硅锭切成硅片,该过程有50%的硅材料损耗,成本昂贵。现在已经开发出多线切割法,可以切出很薄(~100Pm)的硅片,切割损失小(~30%),硅片表面切割损伤轻,有利于提高电池效率,切割成本低。
高纯的单晶硅棒是单晶硅太阳电池的原料,硅纯度要求99.999%。单晶硅太阳电池是当前开发得最快的一种太阳电池,它的构和生产工艺已定型,产品已广泛用于空间和地面。为了降低生产成本,现在地面应用的太阳电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳电池专用的单晶硅棒。
第二节 多晶硅太阳能电池
一、多晶硅太阳能电池的工作原理
多晶硅太阳能电池发电原理

太阳能电池芯片是具有光电效应的半导体器件,半导体的PN结被光照后产生电流,当光直射太阳能电池芯片,其中一部分被反射,一部分被吸收。一部分透过电池芯片、被吸收的光激发被束缚的高能级状态下的电子,使之成为自由电子,这些自由电子在晶体内向各方向移动,余下空穴(电子以前的位置)。空穴也围绕晶体飘移,自由电子(-)在N结聚集,空穴(+)在P结聚集,当外部环路被闭合,电流产生。
二、多晶硅太阳能电池制作工艺流程
所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;可供应太阳电池的头尾料愈来愈少;对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。下面从两个方面对多晶硅电池的工艺技术进行讨论。
1、实验室高效电池工艺
实验室技术通常不考虑电池制作的成本和是否可以大规模化生产,仅仅研究达到最高效率的方法和途径,提供特定材料和工艺所能够达到的极限。
1)关于光的吸收
对于光吸收主要是:
(1)降低表面反射;
(2)改变光在电池体内的路径;
(3)采用背面反射。
对于单晶硅,应用各向异性化学腐蚀的方法可在(100)表面制作金字塔状的绒面结构,降低表面光反射。但多晶硅晶向偏离(100)面,采用上面的方法无法作出均匀的绒面,目前采用下列方法:
A.激光刻槽
用激光刻槽的方法可在多晶硅表面制作倒金字塔结构,在500~900nm光谱范围内,反射率为4~6%,与表面制作双层减反射膜相当。而在(100)面单晶硅化学制作绒面的反射率为11%。用激光制作绒面比在光滑面镀双层减反射膜层(ZnS/MgF2)电池的短路电流要提高4%左右,这主要是长波光(波长大于800nm)斜射进入电池的原因。激光制作绒面存在的问题是在刻蚀中,表面造成损伤同时引入一些杂质,要通过化学处理去除表面损伤层。该方法所作的太阳电池通常短路电流较高,但开路电压不太高,主要原因是电池表面积增加,引起复合电流提高。
B.化学刻槽
应用掩膜(Si3N4或SiO2)各向同性腐蚀,腐蚀液可为酸性腐蚀液,也可为浓度较高的氢氧化钠或氢氧化钾溶液,该方法无法形成各向异性腐蚀所形成的那种尖锥状结构。据报道,该方法所形成的绒面对700~1030微米光谱范围有明显的减反射作用。但掩膜层一般要在较高的温度下形成,引起多晶硅材料性能下降,特别对质量较低的多晶材料,少子寿命缩短。应用该工艺在225cm2的多晶硅上所作电池的转换效率达到16.4%。掩膜层也可用丝网印刷的方法形成。
C.反应离子腐蚀(RIE)
该方法为一种无掩膜腐蚀工艺,所形成的绒面反射率特别低,在450~1000微米光谱范围的反射率可小于2%。仅从光学的角度来看,是一种理想的方法,但存在的问题是硅表面损伤严重,电池的开路电压和填充因子出现下降。
D.制作减反射膜层
对于高效太阳电池,最常用和最有效的方法是蒸镀ZnS/MgF2双层减反射膜,其最佳厚度取决于下面氧化层的厚度和电池表面的特征,例如,表面是光滑面还是绒面,减反射工艺也有蒸镀Ta2O5,PECVD沉积Si3N3等。ZnO导电膜也可作为减反材料。
2)金属化技术
在高效电池的制作中,金属化电极必须与电池的设计参数,如表面掺杂浓度、PN结深,金属材料相匹配。实验室电池一般面积比较小(面积小于4cm2),所以需要细金属栅线(小于10微米),一般采用的方法为光刻、电子束蒸发、电子镀。工业化大生产中也使用电镀工艺,但蒸发和光刻结合使用时,不属于低成本工艺技术。
电子束蒸发和电镀:
通常,应用正胶剥离工艺,蒸镀Ti/Pa/Ag多层金属电极,要减小金属电极所引起的串联电阻,往往需要金属层比较厚(8~10微米)。缺点是电子束蒸发造成硅表面/钝化层介面损伤,使表面复合提高,因此,工艺中,采用短时蒸发Ti/Pa层,在蒸发银层的工艺。另一个问题是金属与硅接触面较大时,必将导致少子复合速度提高。工艺中,采用了隧道结接触的方法,在硅和金属成间形成一个较薄的氧化层(一般厚度为20微米左右)应用功函数较低的金属(如钛等)可在硅表面感应一个稳定的电子积累层(也可引入固定正电荷加深反型)。另外一种方法是在钝化层上开出小窗口(小于2微米),再淀积较宽的金属栅线(通常为10微米),形成mushroom—like状电极,用该方法在4cm2 Mc-Si上电池的转换效率达到17.3%。目前,在机械刻槽表面也运用了Shallow angle (oblique)技术。
3)PN结的形成技术
(1)发射区形成和磷吸杂
对于高效太阳能电池,发射区的形成一般采用选择扩散,在金属电极下方形成重杂质区域而在电极间实现浅浓度扩散,发射区的浅浓度扩散即增强了电池对蓝光的响应,又使硅表面易于钝化。扩散的方法有两步扩散工艺、扩散加腐蚀工艺和掩埋扩散工艺。目前采用选择扩散,15×15cm2电池转换效率达到16.4%,n++、n+区域的表面方块电阻分别为20Ω和80Ω.
对于Mc—Si材料,扩磷吸杂对电池的影响得到广泛的研究,较长时间的磷吸杂过程(一般3~4小时),可使一些Mc—Si的少子扩散长度提高两个数量级。在对衬底浓度对吸杂效应的研究中发现,即便对高浓度的衬第材料,经吸杂也能够获得较大的少子扩散长度(大于200微米),电池的开路电压大于638mv,转换效率超过17%。
(2)背表面场的形成及铝吸杂技术
在Mc—Si电池中,背p+p结由均匀扩散铝或硼形成,硼源一般为BN、BBr、APCVDSiO2:B2O8等,铝扩散为蒸发或丝网印刷铝,800度下烧结所完成,对铝吸杂的作用也开展了大量的研究,与磷扩散吸杂不同,铝吸杂在相对较低的温度下进行。其中体缺陷也参与了杂质的溶解和沉积,而在较高温度下,沉积的杂质易于溶解进入硅中,对Mc—Si产生不利的影响。到目前为至,区域背场已应用于单晶硅电池工艺中,但在多晶硅中,还是应用全铝背表面场结构。
(3)双面Mc—Si电池
Mc—Si双面电池其正面为常规结构,背面为N+和P+相互交叉的结构,这样,正面光照产生的但位于背面附近的光生少子可由背电极有效吸收。背电极作为对正面电极的有效补充,也作为一个独立的栽流子收集器对背面光照和散射光产生作用,据报道,在AM1.5条件下,转换效率超过19%。
4)表面和体钝化技术
对于Mc—Si,因存在较高的晶界、点缺陷(空位、填隙原子、金属杂质、氧、氮及他们的复合物)对材料表面和体内缺陷的钝化尤为重要,除前面提到的吸杂技术外,钝化工艺有多种方法,通过热氧化使硅悬挂键饱和是一种比较常用的方法,可使Si-SiO2界面的复合速度大大下降,其钝化效果取决于发射区的表面浓度、界面态密度和电子、空穴的浮获截面。在氢气氛中退火可使钝化效果更加明显。采用PECVD淀积氮化硅近期正面十分有效,因为在成膜的过程中具有加氢的效果。该工艺也可应用于规模化生产中。应用Remote PECVD Si3N4可使表面复合速度小于20cm/s。
2、工业化电池工艺
太阳电池从研究室走向工厂,实验研究走向规模化生产是其发展的道路,所以能够达到工业化生产的特征应该是:
A.电池的制作工艺能够满足流水线作业;
B.能够大规模、现代化生产;
C.达到高效、低成本。
当然,其主要目标是降低太阳电池的生产成本。目前多晶硅电池的主要发展方向朝着大面积、薄衬底。例如,市场上可见到125×125mm2、150×150mm2甚至更大规模的单片电池,厚度从原来的300微米减小到目前的250、200及200微米以下。效率得到大幅度的提高。日本京磁(Kyocera)公司150×150的电池小批量生产的光电转换效率达到17.1%,该公司1998年的生产量达到25.4MW。
1)丝网印刷及其相关技术
多晶硅电池的规模化生产中广泛使用了丝网印刷工艺,该工艺可用于扩散源的印刷、正面金属电极、背接触电极,减反射膜层等,随着丝网材料的改善和工艺水平的提高,丝网印刷工艺在太阳电池的生产中将会得到更加普遍的应用。
(1)发射区的形成
利用丝网印刷形成PN结,代替常规的管式炉扩散工艺。一般在多晶硅的正面印刷含磷的浆料、在反面印刷含铝的金属浆料。印刷完成后,扩散可在网带炉中完成(通常温度在900度),这样,印刷、烘干、扩散可形成连续性生产。丝网印刷扩散技术所形成的发射区通常表面浓度比较高,则表面光生载流子复合较大,为了克服这一缺点,工艺上采用了下面的选择发射区工艺技术,使电池的转换效率得到进一步的提高。
(2)选择发射区工艺
在多晶硅电池的扩散工艺中,选择发射区技术分为局部腐蚀或两步扩散法。局部腐蚀为用干法(例如反应离子腐蚀)或化学腐蚀的方法,将金属电极之间区域的重扩散层腐蚀掉。最初,Solarex应用反应离子腐蚀的方法在同一台设备中,先用大反应功率腐蚀掉金属电极间的重掺杂层,再用小功率沉积一层氮化硅薄膜,该膜层发挥减反射和电池表面钝化的双重作用。在100cm2的多晶上作出转换效率超过13%的电池。在同样面积上,应用两部扩散法,未作机械绒面的情况下转换效率达到16%。
(3)背表面场的形成
背PN结通常由丝网印刷A浆料并在网带炉中热退火后形成,该工艺在形成背表面结的同时,对多晶硅中的杂质具有良好的吸除作用,铝吸杂过程一般在高温区段完成,测量结果表明吸杂作用可使前道高温过程所造成的多晶硅少子寿命的下降得到恢复。良好的背表面场可明显地提高电池的开路电压。
(4)丝网印刷金属电极
在规模化生产中,丝网印刷工艺与真空蒸发、金属电镀等工艺相比,更具有优势,在目前的工艺中,正面的印刷材料普遍选用含银的浆料,其主要原因是银具有良好的导电性、可焊性和在硅中的低扩散性能。经丝网印刷、退火所形成的金属层的导电性能取决于浆料的化学成份、玻璃体的含量、丝网的粗糟度、烧结条件和丝网版的厚度。八十年度初,丝网印刷具有一些缺陷,1)如栅线宽度较大,通常大于150微米;2)造成遮光较大,电池填充因子较低;3)不适合表面钝化,主要是表面扩散浓度较高,否则接触电阻较大。目前用先进的方法可丝网印出线宽达50微米的栅线,厚度超过15微米,方块电阻为2.5~4mΩ,该参数可满足高效电池的要求。有人在15×15平方厘米的Mc—Si上对丝网印刷电极和蒸发电极所作太阳电池进行了比较,各项参数几乎没有差距。
三、多晶硅薄膜太阳能电池
通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。化学气相沉积主要是以SiH2Cl2、SiHCl3、Sicl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。
但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办法是先用LPCVD在衬底上沉炽一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法。多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。德国费莱堡太阳能研究所采用区馆再结晶技术在FZSi衬底上制得的多晶硅电池转换效率为19%,日本三菱公司用该法制备电池,效率达16.42%。液相外延(LPE)法的原理是通过将硅熔融在母体里,降低温度析出硅膜。美国Astropower公司采用LPE制备的电池效率达12.2%。
中国光电发展技术中心的陈哲良采用液相外延法在冶金级硅片上生长出硅晶粒,并设计了一种类似于晶体硅薄膜太阳能电池的新型太阳能电池,称之为“硅粒”太阳能电池,但有关性能方面的报道还未见到。多晶硅薄膜电池由于所使用的硅远较单晶硅少,又无效率衰退问题,并且有可能在廉价衬底材料上制备,其成本远低于单晶硅电池,而效率高于非晶硅薄膜电池,因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。
1、制备多晶硅薄膜电池的要求
1)基本要求
多晶硅薄膜太阳电池的研究重点有两个方面,其一是电池衬底的选择,其二是制备电池的工艺和方法,但无论是哪一方面的研究都应满足制备多晶硅薄膜电池的一些基本要求:
(1)低成本(材料和工艺)
(2)高效率
(3)易于产业化
2)必备要求
对于衬底的选择必须满足以下一些条件:
(1)低成本
(2)导电(或绝缘,依结构设计而定)
(3)热膨胀系数与硅匹配
(4)非毒性
(5)有一定机械强度
2、衬底
比较合适的衬底材料为一些硅或铝的的化合物,如SiC,Si3N4,SiO2,Si,Al2O3,SiAlON,Al等,从目前的文献看有以下一些衬底:
1)单晶硅
2)多晶硅
3)石墨包SiC
4)SiSiC
5)玻璃碳
6)SiO2膜
3、工艺方法
目前,制备多晶硅薄膜的工艺方法主要有以下几种:
1)化学气相乘积法(CVD法)
2)等离子体增强化学气相沉积法(PECVD法)
3)液相外延法(LPE)
4)等离子体溅射沉积法
化学气相沉积(CVD)法就是将衬底加热到适当的温度,然后通以反应气体(如SIH2CL2、DIHCL3、SICL4、SIH4等),在一定的保护气氛下反应生成硅原子并沉积在衬底表面。这些反应的温度通常较高,在800~1200℃之间。人们发现,如果直接在非硅底材上用CVD法沉积多晶硅,较难形成较大的晶粒,并且容蝗在晶粒之间形成孔隙,对制备较高效率的电池不利。因此发展了再结晶技术,以提高晶粒尺寸,其具体方法是:先用低压化学气相沉积(LPCVD)法在衬底表面形成一层较薄的、重掺杂的非晶硅层,再用高温将这层非晶硅层退火,得到较大的晶粒,用这层较薄的大尽寸多晶硅层作为籽晶层,在其上面用CVD法生长厚的多晶硅膜。可以看出,这种CVD法制备多晶硅薄膜太阳电池的关键是寻找一种较好的再结晶技术。到目前为止,再结晶技术主要有以下几种:
(1)固相晶化(LAR)法
(2)区熔再结晶(ZMR)法
(3)激光再结晶(LMC)法
固相晶化法需对非晶硅薄膜进行整体加热,温度要求达到1414℃的硅的熔化点。该法的缺点是整体温度较高,晶粒取向散乱,不易形成柱状结晶。区熔再结晶法需将非晶硅整体加热至一定温度,通常是1100℃,再用一个加热条加热局部使其达到熔化状态。加热条在加热过程中需在非晶硅表面移动。区熔再结晶法可以得到厘米量级的晶粒,并且在一定的技术处理和工艺条件的配合下可以得到比较一致的晶粒聚向。激光退火法采用激光束的高温将非晶硅薄膜熔化结晶,以得到多晶硅薄膜。在这三种方法中以ZMR法最成功,日本三菱公司用该法制备的电池,效率已达16.42%,德国的FRONHAUFER研究所在这方面的研究处于领先水平。
等离子增强化学气相沉积(PECVD)法是利用PECVD技术在非硅衬底上制备晶粒较小的多晶硅薄膜的一种方法。该薄膜是一种P-I-N结构,主要特点是在P层和N层之间有一层较厚的多晶硅的本征层(I层)。其制备温度很底(100-200℃),晶粒很小(~10-7M量级),但已属于多晶硅薄膜,几乎没有效率衷减问题。日本科尼卡公司在1994年提出这一方法,目前用这一方法制备的电池,最高效率已达10.7%。但是,该方法也存在生长速度太慢以及薄膜极易受损等问题,有待今后研究改进。
液相外延(LPE)法就是通过将硅熔融在母液里,降低温度使硅析出成膜的一种方法,美国ASTROPOWER公司和德国MAX-PLANK研究所对这一技术进行了深入的研究。前者用LPE法制备的电池,效率已达12.2%,但技术细节十分保密。
等离子体溅射法是一种物理制备法,还很不成熟。其主要问题也是晶粒的致密度问题。
除了上述制备薄膜的方法外,在用多晶硅薄膜制备太阳电池器件方面人们也采取了一系列工艺步聚,以提高效率。这些工艺步聚包括:
(1)衬底的制备和选择;(2)隔离层的制备
(3)籽晶层或匹配层的制备;(4)晶粒的增大
(5)沉积多晶硅薄膜;(6)制备P-N结
(7)光学限制:上下表面结构化,上下表面减反射
(8)电学限制:制备背场(BSF)和前后电极的欧姆接触
(9)制备电极;(10)钝化:晶粒间界的钝化和表面钝化
目前,几乎所有制备体单晶硅高效电池的实验室技术均已用在制备多晶硅薄膜太阳电池的工艺上,甚至还包括一些制备集成电路的方法和工艺。
第三节 非晶硅太阳能电池
一、非晶硅薄膜太阳能电池原理简介
非晶硅太阳电池的工作原理是基于半导体的光伏效应。当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场Vb的作用下,光生电子和空穴被分离,空穴漂移到P边,电子漂移到N边,形成光生电动势VL, VL 与内建电势Vb相反,当VL = Vb时,达到平衡; IL = 0, VL达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc,此时VL= 0;当外电路加入负载时,则维持某一光电压VL和光电流IL。其I--V特性曲线见下图:
I--V特性曲线

非晶硅太阳电池的转换效率定义为:

Pi是光入射到电池上的总功率密度,Isc是短路电流密度,FF为电池的填充因子,Voc为开路电压,Im和Vm分别是电池在最大输出功率密度下工作的电流密度和电压。
目前,子电池的开路电压约在0.8V—0.9V之间,Isc达到13mA/cm2,FF在0.7-0.8之间,η达到12%以上。
由于太阳光谱中的能量分布较宽,主要部分由0.3µm—1.5µm的波长范围组成。现有的任何一种半导体材料都只能吸收能量比其能隙值高的光子,即只能在一有限波段转换太阳能量,故单结太阳电池不可能完全有效地利用太阳能。采用分波段利用太阳能光谱的叠层电池结构则是有效提高光电转换效率的有效方法之一,而且也是主要趋势。叠层太阳电池的结构见图4。目前常规的叠层电池结构为a-Si/a-SiGe, a-Si/a-Si/a-SiGe, a-Si/a-SiGe/a-SiGe, a-SiC/a-Si/a-SiGe等。
二、非晶硅太阳电池的发展历程
a—Si:H首先是Spear等利用直流辉光放电技术制备的,从此才实现了对非晶硅基材料的掺杂,开辟了非晶硅材料应用的新时代。以玻璃基片为衬底的a—Si电池为例,其制造工序是:
洁净玻璃衬底->生长TCO膜->激光切割TCO膜->依次生长p-i-n非晶硅膜->激光切割a—si膜->蒸发或溅射A1电极->激光切割或掩模蒸发A1电极。
TCO膜的种类有铟锡氧化物(ITO)、二氧化锡(SnO2)和氧化锌(ZnO)。目前,玻璃衬底电池上用的TCO膜是SnO2膜或SnO2/ZnO复合膜。
a—Si材料一般都是用气相沉积法制成的(amorphous一词一般应用于由气相沉积制得的非晶硅材料)。根据不同的离解和沉积方式,气相沉积可以分为很多不同的方法,如辉光放电法(又称PECVD)、光化学气相沉积法(Photo—CVD)、热丝法(Hot—wire)及溅射法等(Sputtering)等。辉光放电法制备非晶硅薄膜是一种最普遍的方法,在工业上也应用最广泛。根据辉光放电功率频率不同,辉光放电法可以分为射频辉光放电(RFPECVD,f=13.56MHz)、直流辉光放电(DCPECVD,f=0)、低频辉光放电(f~kHz)、超高频辉光放电(VHFPECVD,f=20~50MHz)及微波辉光放电(MWPECVD,f=2.45GHz)。表l对这些方法进行了总结。
在用辉光放电法制备a—Si薄膜太阳电池时,把硅烷(SiH4)等原料气体导入真空反应室内,用等离子辉光放电加以分解,即SiH4→Si+2H2,分解形成的硅在衬底材料上沉积就可以形成a—Si膜。如果在原料气体中加入硼烷(B2H6),即能生成P型非晶硅(pa—Si),如果在原料气体中加入磷烷(PH3),即能生长n型非晶硅(na—Si)。这样,通过变换原料气体,就可以制备出p-i-n非晶硅薄膜太阳电池。如以玻璃基片为衬底的电池组件.将电池做成p-i-n结构,其中p为窗口层。
1997年原始效率是15.2%,稳定效率是13%的a—Si太阳电池已经被制作出来。非晶硅太阳电池的继续发展,需要从提高转换效率和提高稳定性方面入手。为了提高其转换效率,可采取以下技术措施,如改进p型窗口材料及其前后界面特性,采用陷光结构以增加短路电流,采用叠层结构以扩展光谱响应范围等。在提高非晶硅太阳电池的稳定性方面,采用新的制备方法和制备工艺,减少非晶硅膜中的H含量和缺陷态密度,使其形成稳定的Si—Si键和Si—H键网络结构,获得高稳定性的ia—Si:H材料。还可以采用叠层电池结构以扩展光谱响应范围并提高稳定性,以及采用绒面上电极和多层背反射电极以提高光在i层的吸收率等。
三、中国非晶硅太阳能电池产业化稳步发展
提高电池效率最有效的途径是尽量提高电池的光吸收效率。对硅基薄膜而言,采用窄带隙材料是必然途径。如Uni-Solar公司采用的窄带隙材料为a-SiGe(非晶硅锗)合金,他们的a-Si/a-SiGe/a-SiGe三结叠层电池,小面积电池(0.25cm2)效率达到15.2%,稳定效率达13%,900cm2组件效率达11.4%,稳定效率达10.2%,产品效率达7%-8%。
国际公认非晶硅/微晶硅叠层太阳能电池是硅基薄膜电池的下一代技术,是实现高效低成本薄膜太阳能电池的重要技术途径,是薄膜电池新的产业化方向。2005年日本三菱重工和钟渊化学公司的非晶硅/微晶硅叠层电池组件样品效率分别达到11.1%(40cm×50cm)和13.5%(91cm×45cm)。日本夏普公司2007年9月实现非晶硅/微晶硅叠层太阳能电池产业化生产(25MW,效率8%-8.5%),欧洲Oerlikon(奥立康)公司、美国AppliedMaterials(应用材料公司),也正研发产品级非晶硅/微晶硅电池关键制造技术。
国内,南开大学以国家“十五”、“十一五”973项目和“十一五”863项目为依托,进行微晶硅材料和非晶硅/微晶硅叠层电池研究。小面积微晶硅电池效率达9.36%,非晶硅/微晶硅叠层电池效率达11.8%,10cm×10cm组件效率达9.7%。现正与福建钧石能源公司合作,进行平方米级非晶硅/微晶硅叠层电池关键设备及电池制造技术的研发。
四、非晶硅太阳能电池产业面临机遇
严峻的晶硅短缺使越来越多的太阳能电池生产设备处于停产状态,而不断上涨的晶硅价格也在一步步吞噬太阳能电池生产商的利润。因此,寻找晶硅或减少对晶硅的依赖成为太阳能电池企业不得不面临的选择。
目前一些企业在减少对多晶硅的依赖上取得了进展。如宁波杉杉尤里卡太阳能有限公司通过处理IC工业废片缓解原料瓶颈,还可获得较低的成本优势和较高的盈利。但从产业发展的角度看,这只能够缓解部分原料瓶颈,不能成为长远避险工具。从长远看,摆脱对晶硅的依赖才是长久安全之策。
多晶硅和薄膜晶体硅太阳能电池目前无法解决原料瓶颈。铸造多晶硅(晶硅熔融,然后定向凝固)省去晶硅拉棒工序,能耗降低且生产效率大大提高,而且方形结构较圆形单晶片更能提高晶硅利用率(因太阳能电池组件多为方形),因此多晶硅太阳能电池已是单晶硅太阳能电池的替代产品,但仍无法摆脱对晶体硅的高度依赖。
薄膜晶体硅太阳能电池能够大大降低晶硅用量,但目前还处于研发阶段,尚未工业化。
在这种形势下,非晶硅薄膜太阳能电池与化合物薄膜太阳能电池获得了难得的发展机遇。
化合物薄膜太阳能电池主要有硒铟铜(CIS)和碲化镉(CdTe)薄膜电池,硒铟铜和碲化镉薄膜电池的效率较非晶硅薄膜电池高,成本较单晶硅电池低,并且易于大规模生产,还没有效率衰减问题。但是这种电池的原材料之一镉对环境有较强的污染,而且硒、铟、碲等都是较稀有的金属。
而非晶硅太阳能电池工艺成熟、成本低,且无原料瓶颈。非晶硅薄膜太阳电池是薄膜太阳能电池中最成熟的产品,其加工原理为使用硅烷(SiH4)等离子体分解法,通过在硅烷掺杂乙硼烷(B2H6)和磷化氢(PH3)等气体,在低成本基板上(玻璃、不锈钢)低温成膜。其主要优点是成本低,制备方便,没有原料瓶颈。
非晶硅薄膜太阳能电池由Carlson和Wronski在20世纪70年代中期开发成功,80年代其生产曾达到高潮,约占全球太阳能电池总量的20%左右,但由于非晶硅太阳能电池转化效率低于晶体硅太阳能电池,而且非晶硅太阳能电池存在光致衰减效应的缺点:光电转换效率会随着光照时间的延续而衰减,其发展速度逐步放缓。目前非晶硅薄膜太阳能电池产量占全球太阳能电池总量的10%左右。但晶体硅的短缺及价格上涨将是长期存在的事实,即使晶体硅瓶颈突破,能源节省优势仍然能保障非晶硅太阳能电池的生存空间。
上世纪80年代,中国从美国克罗拉公司引进一条1兆瓦非晶硅太阳能电池生产线,工业化较为成功。截至2003年底我国非晶硅太阳能电池还只有这一条生产线。目前深圳为日月环公司和创益公司拥有两条线,但还处于工业化技术进一步研究的阶段。
从目前看,非晶硅太阳能电池的缺点目前已不成为其发展的障碍。
转化率不高,相同的输出电量所需太阳能电池面积增加,对于对太阳能电池占地面积要求不高的场合尤其适用,如农村和西部地区。
中国目前尚有约28000个村庄、700万户、大约3000万农村人口还没有用上电,60%的有电县严重缺电;光致衰减效应也可在电量输出中加以考虑,分析师认为以上缺点已不成为其发展的障碍,非晶硅太阳能电池已迎来新的发展机遇。不过,非晶硅太阳能电池投资额是晶体硅太阳能电池的5倍左右,因此项目投资有一定的资金壁垒。
第四节 多元化合物太阳能电池
一、硫化镉太阳电池
早在1954年雷诺兹就发现了硫化镉具有光生伏打效应。1960年采用真空蒸镀法制得硫化镉太阳电池,光电转换效率为3.5%。到1964年美国制成的硫化镉太阳电池,光电转换效率提高到4%~6%。后来欧洲掀起了硫化镉太阳电池的研制高潮,把光电效率提高到9%,但是仍无法与多晶硅太阳电池竞争。不过人们始终没有放弃它,除了研究烧结型的块状硫化镉太阳电池外,更着重研究簿膜型硫化镉太阳电池。它是用硫化亚铜为阻挡层,构成异质结,按硫化镉材料的理论计算,其光电转换效率可达16.4%。中国科学院长春应用化学研究所于80年代初曾把薄膜硫化镉太阳电池的光电转换效率做到7.6%。尽管非晶硅薄膜电池在国际上有较大影响,但是至今有些国家仍指望发展硫化镉太阳电池,因为它在制造工艺上比较简单,设备问题容易解决。
二、砷化镓太阳电池
砷化镓是一种很理想的太阳电池材料,它与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。已研究的砷化镓系列太阳电池有单晶砷化镓、多晶砷化镓、镓铝砷--砷化镓异质结、金属--半导体砷化镓、金属--绝缘体--半导体砷化镓太阳电池等。砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法、直接拉制法、气相生长法、液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。
三、铜铟硒太阳电池
以铜、铟、硒三元化合物半导体为基本材料制成的太阳电池。它是一种多晶薄膜结构,一般采用真空镀膜、电沉积、电泳法或化学气相沉积法等工艺来制备,材料消耗少,成本低,性能稳定,光电转换效率在10%以上。因此是一种可与非晶硅薄膜太阳电池相竞争的新型太阳电池。近来还发展用铜铟硒薄膜加在非晶硅薄膜之上,组成叠层太阳电池的可能,借此提高太阳电池的效率,并克服非晶硅光电效率的衰降。